

County Commissioners:

James J. Moran, At Large Jack N. Wilson, Jr., District 1 Stephen Wilson, District 2 Robert Charles Buckey, District 3 Mark A. Anderson, District 4

DEPARTMENT OF PUBLIC WORKS SANITARY DISTRICT

310 Bateau Drive Stevensville, MD 21666

Telephone: (410) 643-3535 Fax: (410) 643-7364

www.qac.orq

June 1, 2016

2016 Annual Drinking Water Quality Report

Public Works Water Treatment Facility MDE Public Water System ID No. 170014

This report is required by the federal Safe Water Drinking Act Amendment of 1996 and is designed to educate you about the quality of the water we deliver to you every day. We are pleased to inform you that your drinking water is safe and meets all federal and state requirements. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water.

Your water is supplied by the Department of Public works water treatment facility that utilizes groundwater from a single 4 inch well 660 feet deep into the Magothy aquifer.

The Sanitary District routinely monitors for constituents in your drinking water according to Federal and State laws. The enclosed table indicates the results of our monitoring for the period of January 1 All drinking water, including bottled drinking water, may be reasonably to December 31, 2015. expected to contain at least a small amount of some constituents. It's important to remember that the presence of these constituents does not necessarily pose a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

The Sanitary District's water staff consists of nine personnel with a combined experience of 87 years. Each operator is required to obtain 30 hours of formal training every 3 years in water treatment and water distribution operations.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Sanitary District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking and cooking. If you are concerned about lead in your drinking water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the EPA Safe Drinking Water Hotlines at http://www.epa.gov/safewater/lead.

(Please note EPA mandates the previous two paragraphs. Cryptosporidium is a microbe found in some surface water supplies such as rivers or reservoirs. It is not typically found in groundwater, which is where all of our water supplies originate. In regards to lead, none of our water systems have ever had lead issues.)

In the following table you will find many terms and abbreviations you might not be familiar with. To help you to better understand these terms we've provided the following definitions:

Non-Detect - laboratory analysis indicates that the constituent is not present.

Parts per million (ppm) - one part per million corresponds to one minute in two years or a single penny in \$10,000. Also equivalent to milligrams per liter (mg/l).

Parts per billion (ppb) - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000. Also equivalent to micrograms per liter (μ g/I).

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level Goal (MCLG) - The 'Goal' is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Contaminant Level (MCL) - The 'Maximum Allowed' is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Very truly yours,

Alan L. Quimby, P.E. Chief Sanitary Engineer

TEST RESULTS

2015 Public Works Water Treatment Plant

REGULATED CONTAMINENTS

Contaminant	Units	Level Detected	MCL	MCLG	Likely Sources
Arsenic	ppb	5	10	0	Natural Deposits
Copper	ppb	22	AL=1300	1300	Plumbing Corrosion
Fluoride	ppm	73	4000	4000	Natural Deposits
Lead	ppb	0	AL=50	0	Plumbing Corrosion
Nitrate	ppb	Non Detect	10,000	10,000	Fertilizer Runoff
Sulfate	ppb	4	250	250	Natural Deposits

UNREGULATED (but detected) CONTAMINENTS

Contaminant	Units	Level Detected
Sodium	ppm	90

- 1. Gross Alpha and Gross Beta are a measure of naturally occurring radioactive contaminants.
- 2. The Maryland Department of the Environment (MDE) tests for Volatile Organic Compounds (VOC) and Synthetic Organic Compounds (SOC).

Test Sample Dates: (full test results available upon request)

Lead & Copper – December 31, 2010

Nitrate & Nitrite – July 2, 2015

Inorganics – June 7, 2010

VOC/SOC – February 4, 2010

Radioactives – April 1, 2008

All Others – May 15, 2007

Bold indicates new results for this year's report; most contaminants are not required to be tested annually.

WATER CONSERVATION TIPS

1. Introduction

According to the American Water Works Association, the average per person indoor water use in the United States is 69.3 gallons per day. The breakdown of this use is shown below.

As you will note, leaks are responsible for 13.7%, or 9.5 gallons per day (gpd).

Toilets	26.7%	(18.5 gpd)	Leaks	13.7%	(9.5 gpd)	
Clothes Washing	21.7%	(15.0 gpd)	Dishwasher	1.4%	(1.0 gpd)	
Showers & Baths	18.5%	(12.8 gpd)	Other	2.2%	(1.6 gpd)	
Faucets	15.7%	(10.9 gpd)				

Toilets – Toilets use the majority of water in your home, even when they don't leak.

- Older toilets (installed prior to 1994) use 3.5 to 7 gallons per flush. Replacing an older toilet can save the typical household 7,900 to 21,700 gallons per year.
- You can also fill one-half gallon milk bottles with water and place in the tank. Doing so will then save one-half gallon per flush and will not affect performance.
- Check toilets periodically for leaks. This can be done by putting food coloring in the tank (not the bowl) and
 waiting an hour. If the color is in the bowl after an hour, the toilet is leaking. You may need to clean or replace the
 flapper. This is the number one cause of high-usage complaints typically a bathroom in a spare bedroom
 no one uses. A toilet leak can increase your bill by 10 times if allowed to leak for a full quarter!
- Don't use toilets as a trashcan. Flush only when necessary.
- Do not flush unused medicines down the toilet; damage to the environment may result.

3. Bathing - The third highest water use (and the second highest energy use) is bathing.

- If your showerhead can fill a one-gallon bucket in less than 20 seconds, replace it with a water efficient showerhead.
- A short shower instead of a bath will save 20 gallons of water.
- When taking a bath, don't let the cold water escape when you first turn on the hot water, the hot water which follows will warm the initial burst of cold water.

4. Appliances

- Clothes washers are the second biggest water user which uses 30-35 gallons per load.
 A high efficiency model will use 30% less water and 40-50% less energy.
- A full dishwasher uses as much as 25 gallons per load, but a full dishwasher uses less water than washing the same load by hand. Newer dishwashers should not require pre-rising of the dirty dishes in the sink.

5. Other

- Install aerators on all faucets.
- Turn off water when brushing teeth.
- Keep water in the refrigerator to drink, rather than letting water run into the sink while waiting for the
 water to get cool.
- Keep garbage disposal use to a minimum.

6. Irrigation

- A single yard sprinkler uses as much water in one hour as a typical home uses in 24 hours. If you water one hour
 a day for a week, you have doubled your water use for that week.
- Unless you have a 'yard meter' used strictly for irrigation, you will also be paying a sewer fee for the irrigation water.
- Irrigate sparingly, or use alternative means such as rain barrels.